Das Messen in der Raum- und Bauakustik

Michael Vorländer

Institut für Technische Akustik RWTH Aachen

Modern measurement techniques in room and building acoustics

- Introduction
- Modern versus classical methods a conflict ? (MLS, sweeps, …)
- New challenges in impact sound
- "Correct" measurements? -> GUM
- Conclusions

Modern vs classical methods

- Building Acoustics what do we measure?
- Sound levels (energy density)
- Reverberation times (1/3 octave bands)
- Sound intensity

Classical methods in building acoustics

- ISO 140 (Sound insulation)
- ISO 354 (Sound absorption)
- ISO 10534 (Impedance tube)
- ISO 10484 (Flanking transmission)
-
- and ISO 3382 for room acoustics

What do we measure?

How?

Modern measurement techniques

Modern measurement techniques – basic result

Integrated impulse response

Integrated impulse response

Decay curve
$$h^2(t) = N_0 \int_{t}^{\infty} p^2(\tau) d\tau$$

Expected decay = average decay curve (infinite averages) (smooth monotic curve)

Modern measurement techniques in room and building acoustics

- Introduction
- Modern versus classical methods No!
 a conflict ? (MLS, sweeps, ...)
- New challenges in impact sound
- "Correct" measurements? -> GUM
- Conclusions

Modern measurement techniques in room and building acoustics

- Introduction
- Modern versus classical methods a conflict ? (MLS, sweeps, ...)
- New challenges in impact sound
- "Correct" measurements? -> GUM
- Conclusions

Measurement of impulse responses

Measurement of impulse responses

Method 1: Spectrum division, inverse FFT

$$\underline{H}(f) = \frac{\underline{S'}(f)}{S(f)} \qquad h(t) = \mathbf{F}^{-1} \{\underline{H}(f)\}$$

Important: <u>S(f)</u> broadband spectrum

Example 1: 2-channel FFT technique

Measurement of impulse responses

Method 2: Deconvolution

$$h(t) = s'(t) * s^{-1}(t)$$
 $s^{-1}(t) = \mathbf{F}^{-1} \left\{ \frac{1}{\underline{S}(f)} \right\}$

(matched filter, FIR filter)

Example 2: "white" sinusoidal sweep

$$s^{-1}(t) = s(T_{\text{Rep}} - t)$$

Measurement of impulse responses

Method 3: cross correlation

$$h(t) = s'(t) * s(-t) = s'(t) \otimes s(t) = \int_{-\infty}^{\infty} s'(\tau) s(t+\tau) d\tau$$

Important: s(t) "correlation signal"

Example 3: MLS technique

$$s_{\text{MLS}}(t) * h(t) * s_{\text{MLS}}(-t) = s_{\text{MLS}}(t) * s_{\text{MLS}}(-t) * h(t)$$

$$= \Phi_{ss}(t) * h(t)$$

$$\text{cross correlation}$$

$$\text{FHT}$$

$$\frac{300}{50}$$

$$\frac{1}{100}$$

$$\frac{1}{200}$$

$$\frac{1}{100}$$

$$\frac{1}{200}$$

$$\frac{1}{100}$$

$$\frac{1}{200}$$

$$\frac{1}{100}$$

$$\frac{1}{200}$$

$$\frac{$$

Modern measurement techniques

$$h(t) = \mathbf{F}^{-1} \left\{ \frac{\underline{S}'(f)}{\underline{S}(f)} \right\}$$

$$h(t) = s'(t) * s^{-1}(t) ; \quad s^{-1}(t) = \mathbf{F}^{-1} \left\{ \frac{1}{\underline{S}(f)} \right\}$$

$$h(t) = s'(t) * s(-t) = s'(t) \otimes s(t)$$

- Formulations mathematically equivalent ("white" spectrum signals)
- Differences in crest factor (peak to rms), numerical precision, performance of A/D hardware,

by: - spectrum division

- deconvolution
- cross correlation

Energy compression

Impact into standardisation: ISO 18233

- Classical method vs. modern methods
- Impulse measurement technique
 (Excitation, spectral requirements, level and linearity, stability and time-invariance, integration limits, averaging, noise compensation,)
- Annex A: Example of MLS
- Annex B: Example of Swept-sine

Errors caused by nonlinearities

After Müller and Massarani (J. Audio Eng. Soc. 2001)

Fig. 10. Measurement of room impulse response in a reverberant chamber with 1, 10 and 100 synchronous averages. Left: with MLS, right: with sweep of identical coloration and energy. The curves are compressed to 1303 values, each of them representing the maximum of 805 consecutive samples.

Modern measurement techniques in room and building acoustics

we can measure as accurately as we want!

- yes, if LTI is fulfilled
- the remaining sources of errors are related to the acoustic field, to loudspeakers and to microphones, these errors are more or less systematic (-> GUM)

Modern measurement techniques in room and building acoustics

- Introduction
- Modern versus classical methods a conflict ? (MLS, sweeps, ...)
- New challenges in impact sound
- "Correct" measurements? -> GUM
- Conclusions

Impact sound level of a person walking

Interaction force

Calculating L_{walker}

Measurement setup

Walker and floor mobilities

$L_{\rm n}$, $L_{\rm walker}$, $L_{\rm ap}$ and all the others

(walking, jumping, housing equiment)

Modern measurement techniques in room and building acoustics

- Introduction
- Modern versus classical methods a conflict ? (MLS, sweeps, …)
- New challenges in impact sound
- "Correct" measurements? -> GUM
- Conclusions

Why are uncertainties relevant?

GUM

- <u>G</u>uide to the Expression of <u>U</u>ncertainty in Measurement
- Standardised methodology to treat uncertainties
- Guideline to develop uncertainty intervals
- Requirement in many measurement standards in acoustics

GUM procedure

A systematic approach to the modelling of measurements for uncertainty evaluation

GUM procedure & application

Applying GUM to room acoustics

- Identification of influence factors is challenging
- Influence factors not always directly measurable
- Complex mathematical operations (2Ch-FFT)
- RIR not a simple "in-between quantity"
- Search for a simple and practical model

Room acoustical measurement model

Linear model with sources of error

Linear uncertainty dependence graph

$$y = y' - K_{room} - K_{equipment} - K_{evaluation}$$

Experiments

- Determining correction factors using special measurements
 - Turning the loudspeaker on a turntable
 - Displacement of the loudspeaker
 - Displacement of the microphones
 - Background noise
 - LTI-assumption correct?

One example: Source rotation

Source rotation

Another example: Receiver position

Receiver position

Source position

Uncertainty budget of a single measurement

Reduced uncertainty budget due to averaging

Conclusion

- New methods are powerful (ISO)
- Coming soon: New approaches in impact and structure-borne sound in buildings
- GUM Strategy to reduce uncertainty
- GUM in sound insulation (Wittstock, PTB)

